Data Science Principles

Are you prepared for our data-driven world?

Data Science Principles is a Harvard Online course that gives you an overview of data science with a code- and math-free introduction to prediction, causality, data wrangling, privacy, and ethics.

Featuring faculty from:
July 2024
4 weeks
4–5 hours per week
Certificate Price
Program Dates
Applications Close
Course Calendar
October 2024
4 weeks
4–5 hours per week
Certificate Price
Program Dates
Applications Close
Course Calendar
Apply today for Data Science Principles

What You'll Learn

What is data science, and how can it help you make sense of the infinite data, metrics, and tools that are available today? 

Data science is at the core of any growing modern business, from health care to government to advertising and more. Insights gathered from data science collection and analysis practices have the potential to increase quality, effectiveness, and efficiency of work output in professional and personal situations. 

Data Science Principles makes the foundational topics in data science approachable and relevant by using real-world examples that prompt you to think critically about applying these understandings to your workplace. Get an overview of data science with a nearly code- and math-free introduction to prediction, causality, visualization, data wrangling, privacy, and ethics. 


Data Science Principles is an introduction to data science course for anyone who wants to positively impact outcomes and understand insights from their company’s data collection and analysis efforts. This online certificate course will prepare you to speak the language of data science and contribute to data-oriented discussions within your company and daily life. This is a course for beginners and managers to better understand what data science is and how to work with data scientists.

Data Science Principles is part of our Harvard on Digital Learning Path.

The Harvard on Digital course series provides the frameworks and methodologies to turn data into insight, technologies into strategy, and opportunities into value and responsibility to lead with data-driven decision making.

Explore More Courses in this Learning Path

The course is part of the Harvard on Digital Learning Path and will be delivered via HBS Online’s course platform.  Learners will be immersed in real-world examples from experts at industry-leading organizations. By the end of the course, participants will be able to:

  • Understand the modern data science landscape and technical terminology for a data-driven world
  • Recognize major concepts and tools in the field of data science and determine where they can be appropriately applied
  • Appreciate the importance of curating, organizing, and wrangling data
  • Explain uncertainty, causality, and data quality—and the ways they relate to each other
  • Predict the consequences of data use and misuse and know when more data may be needed or when to change approaches

Your Instructor


Dustin Tingley is a data scientist at Harvard University. He is Professor of Government and Deputy Vice Provost for Advances in Learning and helps to direct Harvard's education focused data science and technology team. Professor Tingley has helped a variety of organizations use the tools of data science and he has helped to develop machine learning algorithms and accompanying software for the social sciences. He has written on a variety of topics using data science techniques, including education, politics, and economics.

Real World Case Studies

Affiliations are listed for identification purposes only.

Photo of Mauricio Santillana, featured case study in Data Science Principles

Mauricio Santillana

Listen to Harvard Professor and faculty member at Boston Children’s Hospital analyze Google Flu, its failures, and lessons learned.

Photo of Latanya Sweeney, featured protagonist in Data Science Principles

Latanya Sweeney

Explore the difficulties faced in keeping data anonymous and private with Harvard Professor and Director of the Data Privacy Lab in IQSS at Harvard.

Dan Restuccia, featured protagonist in Data Science Principles

Dan Restuccia

Learn how Burning Glass Technologies uses text analysis to recommend job openings, skill development, and labor market trends.

Available Discounts and Benefits for Groups and Individuals

Investment Icon

Experience Harvard Online by utilizing our wide variety of discount programs for individuals and groups. 


Past Participant Discounts

Learners who have enrolled in at least one qualifying Harvard Online program hosted on the HBS Online platform are eligible to receive a 30% discount on this course, regardless of completion or certificate status in the first purchased program. Past Participant Discounts are automatically applied to the Program Fee upon time of payment.  Learn more here.

Learners who have earned a verified certificate for a HarvardX course hosted on the edX platform are eligible to receive a 30% discount on this course using a discount code. Discounts are not available after you've submitted payment, so if you think you are eligible for a discount on a registration, please check your email for a code or contact us.

Nonprofit, Government, Military, and Education Discounts

For this course we offer a 30% discount for learners who work in the nonprofit, government, military, or education fields. 

Eligibility is determined by a prospective learner’s email address, ending in .org, .gov, .mil, or .edu. Interested learners can apply below for the discount and, if eligible, will receive a promo code to enter when completing payment information to enroll in a Harvard Online program. Click here to apply for these discounts.

Gather your team to experience Data Science Principles and other Harvard Online courses to enjoy the benefits of learning together: 

  • Single invoicing for groups of 10 or more
  • Tiered discounts and pricing available with up to 50% off
  • Growth reports on your team's progress
  • Flexible course and partnership plans 

Learn more and enroll your team

Who Will Benefit

Student Icon

Students and Recent Graduates

Prepare for your career by building a foundation of the essential concepts, vocabulary, skills, and intuition necessary for business.

Team Leader Icon

Early- and Mid-Career Professionals

Recognize how data is changing industries and think critically about how to develop a data-driven mindset to prepare you for your next opportunity.

Presenter Icon

Marketing and Project Management Professionals

Learn how data science techniques can be essential to your industry and how to contribute to cross-functional, data-oriented discussions.

Learner Testimonials

"This is a topic that people in any industry should have at least basic knowledge of in order to create more efficient and competitive businesses, tools, and resources."

Carlos E. Sapene
CEO, Chief Strategy Officer

"I found value in the real-world examples in Data Science Principles. With complicated topics and new terms, it's especially beneficial for learnings to be able to tie back new or abstract concepts to ideas that we understand. This course helped me understand data in this context and what algorithms are actually trying to solve."

Alejandro D.
Financial Services Analyst

"Data Science Principles applies to many aspects of our daily lives. The course helps guide people in everyday life through decision making and process thinking."

Jared D.
Senior Director of Sales

"The way this complicated topic was presented and the reflection it caused was impressive. I enjoyed the way I could dive into a whole new world of expertise in such an engaging way with all these various tools such as videos, peer discussions, polls, and quizzes."

Sonja Schwetje
Managing Director/Editor-in-Chief, ntv


Data Science Principles makes the fundamental topics in data science approachable and relevant by using real-world examples and prompts learners to think critically about applying these new understandings to their own workplace. Get an overview of data science with a nearly code- and math-free introduction to prediction, causality, visualization, data wrangling, privacy, and ethics.

Download Full Syllabus

  • Study a flu detection case study alongside Professor Dustin Tingley and Mauricio Santillana, Assistant Professor at Harvard’s T.H. Chan School of Public Health.
  • Explain why data collection is important.
  • Identify factors that may affect data quality.
  • Recognize that not all data is numerical.
  • Explain how the organization of data can affect the information you are able to extract from it.
  • Study a predicting sepsis case alongside Craig Umscheid, Vice President and Chief Quality and Innovation Office, University of Chicago Medicine.
  • Understand the basic structure of a predictive algorithm.
  • Identify where human decisions shape predictive systems.
  • Evaluate the success of a predictive system.
  • Study The Google Tax Case. 
  • Explain why it is important to establish causal relationships.
  • Identify barriers to establishing causal relationships in a variety of settings.
  • Identify why randomization can help establish a causal relationship but also create other problems.
  • Explore a privacy and facial recognition case study with Latanya Sweeney, Professor of the Practice of Government and Technology at the Harvard Kennedy School and Sciences, director and founder of the Public Interest Tech Lab, and director and founder of the Data Privacy Lab.
  • Explain why data privacy is important.
  • Describe what can constitute a violation of privacy.
  • Critique existing privacy policies.
  • Create a set of ethical tenets to guide data work at their own organizations.
  • Study the Burning Glass and Text Data case.
  • Identify sources of non-numerical data.
  • Explain why it would be useful to use non-numerical data.
  • Describe the differences in approach for supervised and unsupervised learning.
  • Identify use cases for neural networks.
  • Explore a case study on reducing food waste with Shelf Engine.
  • Describe some algorithms commonly used in data science.
  • Understand basic workhorse algorithms in data science such as regression.
  • Explain why and how such tools are made substantially more complex.
  • Explain the crucial role humans have in overseeing and maintaining algorithms.
  • Explain some of the trade-offs between more sophisticated algorithms, including the costs of running and evaluating their success.
  • Learn about the Harvard Link case study.
  • Explain the importance of data transformation and wrangling.
  • List the common technologies used within data science ecosystems.
  • Describe the connection between data science tasks, software tools, and hardware tools.
  • Identify potential sources of bottlenecks in the data science process.
  • Work on a health care prioritization case study.
  • Recognize a problem that an algorithm might be able to solve.
  • Recognize the challenges created by using data science tools in ways outside their intended use.
  • Identify steps within the data science process that need auditing.

Earn Your Certificate

Enroll today in Harvard Online's Data Science Principles course.

Apply Now

Still Have Questions?

Are there discounts available for this course? What are the learning requirements? How do I list my certificate on my resume? Learn the answers to these and more in our FAQs.


Data Science Principles Certificate

Learn More

Explore and connect to our courses via articles, webinars, and more.

What do Chick-fil-A and Stitch Fix have in common?

How can data science benefit your business decisions? By combining knowledge and analysis of data with business acumen, modern companies can become experts in data science execution.

Building Data Science into your Strategy

Watch a webinar about how to rethink your business strategy for data-driven decisions.

Professor Dustin Tingley Explains How Data Science Is For Everyone

We spoke with Professor Tingley to discuss his mixed career path, his upcoming book, and his data-driven outlook on the future of technology and our world.

Related Courses

Read More

Data Privacy and Technology

Explore the risks and rewards of data privacy and collection

Explore legal and ethical implications of one’s personal data, the risks and rewards of data collection and surveillance, and the needs for policy, advocacy, and privacy monitoring.

Read More

Big Data for Social Good

Big social problems require big data solutions

Using real-world data and policy interventions as applications, this course will teach core concepts in economics and statistics and equip you to tackle some of the most pressing social challenges of our time.

Read More

Data Science for Business

Move beyond the spreadsheet

Designed for managers, this course provides a hands-on approach for demystifying the data science ecosystem and making you a more conscientious consumer of information.